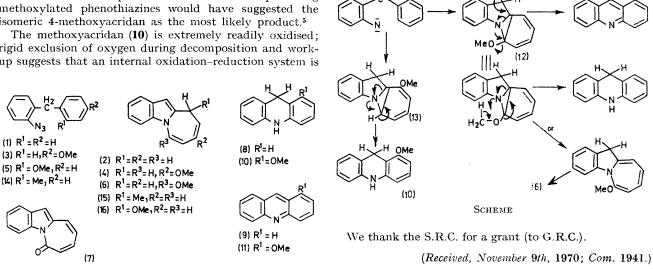
The Production of Acridines by a Nitrene Insertion Reaction

By G. R. CLIFF and GURNOS JONES*

(University of Keele, Keele, Staffordshire ST5 5BG)

Summary Thermal decomposition of 2-azido-2'-methoxydiphenylmethane gives predominantly acridans and acridines, as well as the expected azepinoindoles, while 2-azido-4'-methoxydiphenylmethane and 2-azido-2'methyldiphenylmethane give azepinoindoles with no trace of acridans or acridines.

NITRENE insertion reactions leading to the production of five- or seven-membered heterocyclic rings have often been reported.¹ The only aromatic azide decomposition reactions proceeding through a nitrene intermediate and leading to six-membered heterocycles are those in which the nitrene inserts into the C-H bond of a suitably placed methyl or methylene group (giving dihydrophenanthridines² or tetrahydroquinolines³) and those leading to phenothiazines.^{4,5} When an alkyl nitrene substitutes in an aromatic ring to give a dihydrophenanthridine,⁶ the yield is low. We now report a case where nitrene insertion leads predominantly to acridine derivatives, as well as to azepinoindoles.


The product from thermal decomposition[†] of the parent azide (1) was the azepinoindole (2).⁷ Similarly, 2-azido-4'methoxydiphenylmethane (3) gave the methoxyazepinoindole (4).[‡] However, decomposition of 2-azido-2'-methoxydiphenylmethane (5) gave a mixture of ten components.

[†] All decompositions were performed in trichlorobenzene under a nitrogen atmosphere, at 180-200°.

[‡] All compounds mentioned were fully characterised and gave satisfactory analyses unless otherwise stated.

The principal products and their percentage yields estimated by g.c. were as follows: the methoxyazepinoindole (6) and the azepinoindolone (7) (7.7%); acridan (8) (10%) and acridine (9) (2.8%); 1-methoxyacridan (10) (26%) and 1-methoxyacridine (11) (7%). Acridine derivatives make up approximately 46% of the total products, and over 80%of those separable by g.c.; ¶ most of the compounds can be derived from the two azanorcaradiene intermediates shown in the Scheme. Comparison with the reaction producing methoxylated phenothiazines would have suggested the isomeric 4-methoxyacridan as the most likely product.⁵

The methoxyacridan (10) is extremely readily oxidised; rigid exclusion of oxygen during decomposition and workup suggests that an internal oxidation-reduction system is responsible for the production of 1-methoxyacridine (11). The new insertion process is not due to an ortho (steric) effect, since decomposition of 2-azido-2'-methyldiphenylmethane (14) gave as the main characterised product the azepinoindole (15). Examination of the crude mixture of products by n.m.r. spectroscopy showed no trace of acridan or acridine products.

§ Identical with a synthetic sample supplied by Professor E. Ritchie.

Also shown to be present by g.l.c.-m.s. examination were 2-amino-2'-methoxydiphenylmethane, and the methoxyazepinoindole (16).

¹See, for example, R. K. Smalley and H. Suschitzky, Chem. and Ind., 1970, 1338.

- ² G. Smolinsky, J. Amer. Chem. Soc., 1960, 82, 4717; ibid., 1961, 83, 2489.
- ³ G. Smolinsky and B. I. Feuer, J. Org. Chem., 1964, **29**, 3097. ⁴ P. A. S. Smith, B. B. Brown, R. K. Putney, and R. F. Reinisch, J. Amer. Chem. Soc., 1953, **75**, 6335.

⁵ J. I. G. Cadogan and S. Kulik, Chem. Comm., 1970, 792 and references therein.

⁶ R. A. Abramovitch and E. P. Kyba, Chem. Comm., 1969, 265.

⁷ G. R. Cliff, E. W. Collington, and G. Jones, J. Chem. Soc. (C), 1970, 1490.